МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Омской области

Департамент образования города Омска

БОУ г. Омска "Средняя общеобразовательная школа № 67"

РАССМОТРЕНО

СОГЛАСОВАНО

УТВЕРЖДЕНО

Руководитель ШМО

заместитель директора

И.О. директора школы

------ Головина А.Ю.

Большакова Е.И.

Иванова И.В.

протокол №1 от «28» августа 2024 г.

от «29» августа 2024 г.

приказ №132-од от «30» августа 2024 г.

РАБОЧАЯ ПРОГРАММА

элективного курса по химии «Практикум по химии»

для 10 класса среднего общего образования

Составитель: Головина Анна Юрьевна учитель химии

Омск 2024

Пояснительная записка

Рабочая программа элективного курса по органической химии для 10 класса составлена на основе:

- 1. Закона «Об образовании в Российской Федерации» от 29.12.2012г. № 273- ФЗ (с изменениями);
- 2. Федерального государственного образовательного стандарта среднего общего образования (приказ Министерства образования и науки РФ от 17 мая 2012 № 413, с изменениями);
- 3. Основной образовательной программы школы;
- 4. Учебного плана школы;
- 5. Годового учебного календарного графика на текущий учебный год

Место элективного курса в учебном плане

Учебный план БОУ СОШ № 67 отводит 68 часов на изучение элективного курса по органической химии в 10 классе. Данный курс является логичным и актуальным дополнением к основному базовому курсу химии.

Данная программа обеспечивает реализацию образовательной траектории, связанной с углублённым изучением химии. Содержание рабочей программы учитывает не только предметное содержание и возрастные психологические особенности обучаемых, но и профильную подготовку к обучению в высшей школе, в которой химия является профилирующей дисциплиной.

Данный курс позволяет подготовить обучающихся к осознанному и ответственному выбору будущей профессии, к поступлению в вуз, в котором химия является профильной дисциплиной, успешному обучению в нём.

Цель курса: Расширить и углубить знания учащихся по органической химии.

Задачи:

- формировать у учащихся целостной системы знаний о важнейших закономерностях в органической химии;
- привить навыки решения нестандартных химических задач повышенного уровня трудности;
- продолжить формирование на конкретном учебном материале умений: сравнивать, анализировать, сопоставлять, вычленять существенное, связно, грамотно и доказательно излагать учебный материал;
- сформировать у учащихся универсальные учебные действия;
- развить познавательный интерес к изучению химии;

- помочь учащимся в осознанном выборе профессии.

Содержание обучения

Введение (4ч)

Предмет органической химии. Особенности строения и свойств органических соединений. Значение и роль органической химии в системе естественных наук и в жизни общества. Краткий очерк истории развития органической химии.

Предпосылки создания теории строения: теория радикалов и теория типов, работы А. Кекуле, Э. Франкланда и А. М. Бутлерова. Основные положения теории строения органических соединений А. М. Бутлерова. Химическое строение и свойства органических веществ. изомерия на примере н-бутана и изобутана. Электронное облако и орбиталь, их формы. Электронные и электронно-графические формулы атома углерода в нормальном и возбужденном состояниях. Ковалентная химическая связь и ее разновидности. Водородная связь. Сравнение обменного и донорно-акцепторного механизмов образования ковалентной связи. Первое валентное состояние - sp3-гибридизация - на примере молекулы метана и других алканов. Второе валентное состояние - sp2-гибридизация - на примере молекулы ацетилена. Геометрия молекул рассмотренных веществ и характеристика видов ковалентной связи в них.

Демонстрации: Шаростержневые и объёмные модели метана, этилена и ацетилена.

Углеводороды (25 ч)

Понятие об углеводородах

Природные источники углеводородов. Нефть и ее промышленная переработка. Фракционная перегонка, термический и каталитический крекинг. Природный газ, его состав и практическое использование. Каменный уголь. Коксование каменного угля. Происхождение природных источников углеводородов. Риформинг, алкилирование и ароматизация нефтепродуктов. Экологические аспекты добычи, переработки и использования полезных ископаемых.

Алканы. Гомологический ряд и общая формула алканов. Строение молекулы метана и других алканов. Изомерия алканов. Номенклатура тривиальная, рациональная и ИЮПАК. Рациональная номенклатура как предшественник номенклатуры ИЮПАК. Принципы образования названий органических соединений по ИЮПАК: замещения, родоначальной структуры, старшинства характеристических групп (алфавитный порядок). Физические свойства алканов. Алканы в природе. Промышленные способы получения: крекинг алканов, фракционная перегонка нефти. Лабораторные способы получения алканов: синтез Вюрца, декарбоксилирование солейкарбоновых кислот, гидролиз карбида алюминия. Реакции замещения. Горение алканов в различных условиях. Термическое разложение алканов. Изомеризация алканов. Применение алканов. Механизм реакции радикального замещения, его стадии.

Алкены. Гомологический ряд и общая формула алкенов. Строение молекулы этилена и других алкенов. Изомерия алкенов: структурная и пространственная. Номенклатура и физические свойства алкенов. Получение этиленовых углеводородов из алканов, галогеналканов и спиртов. Реакции присоединения (галогенирование, гидрогалогенирование, гидрирование). Реакции окисления и полимеризации алкенов. Применение алкенов на основе их свойств. Механизм реакции электрофильного присоединения к алкенам. Окисление алкенов в «мягких» и «жестких» условиях.

Алкины. Гомологический ряд алкинов. Общая формула. Строение молекулы ацетилена и других алкинов. Изомерия алкинов. Номенклатура ацетиленовых углеводородов. Получение алкинов: метановый и карбидный способы. Физические свойства алкинов. Реакции присоединения: галогенирование, гидрогалогенирование, гидратация (реакция Кучерова), гидрирование. Тримеризация ацетилена в бензол. Применение алкинов. Окисление алкинов.

Алкадиены. Общая формула алкадиенов. Строение молекул. Изомерия и номенклатура алкадиенов. Физические свойства. Взаимное расположение связей в молекулах алкадиенов: кумулированное, сопряженное, изолированное. Особенности строения сопряженных алкадиенов, их получение. Аналогия в химических свойствах алкенов и алкадиенов. Полимеризация алкадиенов. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Работы С. В. Лебедева. Особенности реакций присоединения к алкадиенам с сопряженными связями.

Циклоалканы. Понятие о циклоалканах и их свойствах. Гомологический ряд и общая формула циклоалканов. Изомерия циклоалканов (по «углеродному скелету», цис-, транс-, межклассовая). Химические свойства циклоалканов: горение, разложение, радикальное замещение, изомеризация. Особые свойства циклопропана, циклобутана.

Арены. Бензол как представитель аренов. Строение молекулы бензола. Сопряжение связей. Изомерия и номенклатура аренов, их получение. Гомологи бензола. Влияние боковой цепи на электронную плотность сопряженного облака в молекулах гомологов бензола на примере толуола. Химические свойства бензола. Реакции замещения с участием бензола: галогенирование, нитрование и алкилирование. Применение бензола и его гомологов. Радикальное хлорирование бензола. Механизм и условия проведения реакции радикального хлорирования бензола. Каталитическое гидрирование бензола. Механизм реакций электрофильного замещения: галогенирования и нитрования бензола и его гомологов. Сравнение реакционной способности бензола и толуола в реакциях замещения. Реакции боковых цепей алкилбензолов.

Демонстрации: Шаростержневые модели молекул алканов для иллюстрации свободного вращения вокруг связи С-С. Получение метана из ацетата натрия и гидроксида натрия. Видеофрагменты и слайды, иллюстрирующие индукционный эффект, гемолитический разрыв ковалентной связи, свободно-радикальный механизм реакций замещения. Объёмные модели *цис-, транс-*изомеров алкенов. Получение этилена из этанола и доказательство его непредельного строения (реакции с бромной водой и раствором КМпО4). Обесцвечивание этиленом бромной воды и раствора перманганата калия. Горение этилена. Взаимодействие алканов и алкенов с концентрированной серной кислотой. Получение ацетилена из карбида кальция. Взаимодействие ацетилена с бромной водой. Взаимодействие ацетилена с раствором КМпО4. Горение ацетилена. Модели молекул алкадиенов с изолированными, кумулированными и сопряжёнными двойными связями. Ознакомление с коллекцией «Каучуки и резины». Шаростержневые и объемные модели бензола и его гомологов. Растворение в бензоле различных органических и неорганических веществ (например, серы, иода). Ознакомление с физическими свойствами бензола (растворимость в воде, плотность, температура плавления - выдерживание запаянной ампулы с бензолом в бане со льдом). Горение бензола на стеклянной палочке. Отношение бензола к бромной воде и раствору КМпО4. Коллекция «Нефть и нефтепродукты». Видеофрагменты «Перегонка нефти».

Расчетные задачи. 1. Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания. 2. Нахождение молекулярной формулы вещества по его относительной плотности и массовой доле элементов в соединениях. Лабораторные опыты: 1. Составление моделей молекул углеводородов. Зачет по теме «Углеводороды»

Кислородсодержащие соединения

Спирты и фенолы (6 ч)

Спирты. Состав и классификация спиртов. Изомерия спиртов (положение гидроксильных групп, межклассовая, «углеродного скелета»). Физические свойства спиртов, их получение. Межмолекулярная водородная связь. Особенности электронного строения молекул спиртов. Химические свойства спиртов, обусловленные наличием в молекулах гидроксильных групп: образование алкоголятов, взаимодействие с галоге- новодородами, межмолекулярная и внутримолекулярная дегидратация, этерификация, окисление и дегидрирование спиртов. Особенности свойств многоатомных спиртов. Качественная реакция на многоатомные спирты. Важнейшие представители спиртов. Физиологическое действие метанола и этанола. Алкоголизм, его последствия.

Фенолы. Фенол, его физические свойства и получение. Химические свойства фенола как функция его строения. Кислотные свойства. Взаимное влияние атомов и групп в молекулах органических веществ на примере фенола. Поликонденсация фенола с формальдегидом. Качественная реакция на фенол. Применение фенола. Классификация фенолов. Сравнение кислотных свойств веществ, содержащих гидроксильную группу: воды, одно- и многоатомных спиртов. Электрофильное замещение в бензольном кольце. Применение производных фенола.

Демонстрации: Физические свойства этанола, пропанола-1, бутанола-1. Взаимодействие натрия со спиртом. Взаимодействие спирта с раствором дихромата калия в серной кислоте. Получение этилена из этанола. Сравнение реакций горения этилового и пропилового спиртов. Растворимость фенола в воде при обычной и повышенной температурах. Вытеснение фенола из фенолята натрия угольной кислотой.

Расчетные задачи на выход продукта реакции. Лабораторные опыты: 2. Окисление спиртов. 3. Качественная реакция на многоатомные спирты. 4. Качественная реакция на фенол.

Альдегиды. Кетоны (4 ч)

Строение молекул альдегидов и кетонов, их изомерия и номенклатура. Особенности строения карбонильной группы. Физические свойства формальдегида и его гомологов. Отдельные представители альдегидов и кетонов. Химические свойства альдегидов, обусловленные наличием в молекуле карбонильной группы атомов (гидрирование, окисление аммиачными растворами оксида серебра и гидроксида меди (II)). Качественные реакции на альдегиды. Реакция поликонденсации формальдегида с фенолом. Особенности строения и химических свойств кетонов. Нуклеофильное присоединение к карбонильным соединениям. Присоединение циановодорода и гидросульфита натрия. Взаимное влияние атомов в молекулах. Галогенирование альдегидов и кетонов по ионному механизму на свету. Качественная реакция на метилкетоны. Расчетные задачи на избыток и недостаток. Лабораторные опыты: 5. Окисление альдегидов.

Карбоновые кислоты, сложные эфиры и жиры (5 ч)

Карбоновые кислоты. Строение молекул карбоновых кислот и карбоксильной группы. Классификация и номенклатура карбоновых кислот. Физические свойства карбоновых кислот и их зависимость от строения молекул. Карбоновые кислоты в природе. Биологическая роль карбоновых кислот. Общие свойства неорганических и органических кислот (взаимодействие с металлами, оксидами металлов, основаниями, солями). Влияние углеводородного радикала на силу карбоновой кислоты. Реакция этерификации, условия ее проведения. Химические свойства непредельных карбоновых кислот, обусловленные наличием связи в молекуле. Реакции электрофильного замещения с участием бензойной кислоты.

Сложные эфиры. Строение сложных эфиров. Изомерия сложных эфиров («углеродного скелета» и межклассовая). Номенклатура сложных эфиров. Обратимость реакции этерификации, гидролиз сложных эфиров. Равновесие реакции этерификации + гидролиза; факторы, влияющие на него. Решение

расчетных задач на определение выхода продукта реакции (в %) от теоретически возможного, установление формулы и строения вещества по продуктам его сгорания (или гидролиза).

Жиры. Жиры - сложные эфиры глицерина и карбоновых кислот. Состав и строение жиров. Номенклатура и классификация жиров. Масла. Жиры в природе. Биологические функции жиров. Свойства жиров. Омыление жиров, получение мыла. Объяснение моющих свойств мыла. Гидрирование жидких жиров. Маргарин. Понятие о СМС. Объяснение моющих свойств мыла и СМС (в сравнении).

Расчетные задачи на смеси веществ.

Лабораторные опыты: 6. Химические свойства карбоновых кислот, общие с минеральными кислотами. 7. Получение сложных эфиров. Зачет по теме «Кислородсодержащие органические вещества»

Углеводы (5 ч)

Моно-, ди- и полисахариды. Представители каждой группы. Биологическая роль углеводов. Их значение в жизни человека и общества.

Моносахариды. Глюкоза, ее физические свойства. Строение молекулы. Равновесия в растворе глюкозы. Зависимость химических свойств глюкозы от строения молекулы. Взаимодействие с гидроксидом меди (II) при комнатной температуре и нагревании, этерификация, реакция «серебряного зеркала», гидрирование. Реакции брожения глюкозы: спиртового, молочнокислого. Глюкоза в природе. Биологическая роль глюкозы. Применение глюкозы на основе ее свойств. Фруктоза как изомер глюкозы. Сравнение строения молекул и химических свойств глюкозы и фруктозы. Фруктоза в природе и ее биологическая роль.

Дисахариды. Строение дисахаридов. Восстанавливающие и невосстанавливающие дисахариды. Сахароза, лактоза, мальтоза, их строение и биологическая роль. Гидролиз дисахаридов. Промышленное получение сахарозы из природного сырья.

Полисахариды. Крахмал и целлюлоза (сравнительная характеристика: строение свойства, биологическая роль). Физические свойства полисахаридов. Химические свойства полисахаридов. Гидролиз полисахаридов. Качественная реакция на крахмал. Полисахариды в природе, их биологическая роль. Применение полисахаридов. Понятие об искусственных волокнах. Взаимодействие целлюлозы с неорганическими и карбоновыми кислотами - образование сложных эфиров.

Демонстрации: Отношение растворов сахарозы и мальтозы к гидроксиду меди(II). Ознакомление с физическими свойствами крахмала. Получение крахмального клейстера. Расчетные задачи по уравнениям нескольких последовательных реакций. Лабораторные опыты: 8. Качественная реакция на глюкозу. 9. Гидролиз сахарозы. 10. Качественная реакция на крахмал.

Азотсодержащие органические соединения (7 ч)

Амины. Состав и строение аминов. Классификация, изомерия и номенклатура аминов. Алифатические амины. Анилин. Получение аминов: алкилирование аммиака, восстановление нитросоединений (реакция Зинина). Физические свойства аминов. Химические свойства аминов: взаимодействие с водой и кислотами. Гомологический ряд ароматических аминов. Алкилирование и ацилирование аминов. Взаимное влияние атомов в молекулах на примере аммиака, алифатических и ароматических аминов. Применение аминов.

Аминокислоты и белки. Состав и строение молекул аминокислот. Изомерия аминокислот. двойственность кислотно-основных свойств аминокислот и ее причины. Взаимодействие аминокислот с основаниями. Взаимодействие аминокислот с кислотами, образование сложных эфиров. Образование внутримолекулярных солей (биполярного иона). Реакция поликонденсации аминокислот. Биологическая роль аминокислот. Применение аминокислот.

Белки как природные биополимеры. Пептидная группа атомов и пептидная связь. Пептиды. Белки. Первичная, вторичная, третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, качественные (цветные) реакции. Биологические функции белков. Значение белков. Четвертичная структура белков как агрегация белковых и небелковых молекул.

Нуклеиновые кислоты. Общий план строения нуклеотидов. Понятие о пиримидиновых и пуриновых основаниях. Первичная, вторичная и третичная структуры молекулы ДНК. Биологическая роль ДНК и РНК. Генная инженерия и биотехнология. Трансгенные формы животных и растений. Демонстрации: Гидролиз белков с помощью пепсина. Лабораторные опыты: 11. Химические свойства белков.

Обобщение. Решение задач на генетическую связь между классами органических веществ (6 ч)

Классификация органических соединений по строению «углеродного скелета»: ациклические (алканы, алкены алкины, алкадиены), карбоциклические (циклоалканы и арены) и гетероциклические. Классификация органических соединений по функциональным группам: спирты, фенолы, простые эфиры, альдегиды, кетоны, карбоновые кислоты, сложные эфиры.

Генетическая связь между классами органических соединений. Решение цепочек превращений по типу задания №32 КИМа ЕГЭ.

Обобщение. Решение комбинированных расчетных задач (6 ч)

Комбинированные расчетные задачи повышенного уровня сложности. Нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания; установление структурной формулы органического вещества на основе его химических свойств или способов получения (№33 КИМа ЕГЭ)

Итоговый зачет по курсу «Углубленное изучение основ органической химии»

Планируемые результаты обучения:

В результате изучения элективного курса «Углубленное изучение основ органической химии» выпускник 10 класса научится:

Понимать

важнейшие химические понятия: химическая связь, химическое строение, углеродный скелет, функциональная группа, изомерия, гомология; *основные теории химии*: теория строения органических соединений;

уметь:

называть изученные вещества по «тривиальной» и международной номенклатуре;

определять: валентность и степень окисления химических элементов в органических соединениях, тип химической связи в органических соединениях, принадлежность веществ к различным классам органических соединений;

характеризовать: общие химические свойства основных классов органических соединений; строение и химические свойства изученных органических соединений;

объяснять: зависимость свойств веществ от их состава и строения; природу химической связи в органических веществах;

выполнять химический эксперимент по распознаванию важнейших органических веществ;

проводить самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах.

В результате изучения курса выпускник 10 класса получит возможность научиться: использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- определения возможности протекания химических превращений в различных условиях и оценки их последствий;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием.

Программа спецкурса направлена на достижение обучающимися следующих личностных результатов:

- 1. осознание российской гражданской идентичности, патриотизма, чувства гордости за российскую химическую науку;
- 2. готовность к осознанному выбору дальнейшей образовательной траектории в учебных заведениях, где химия является профилирующей дисциплиной;
- 3. умение управлять своей познавательной деятельностью,
- 4. готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 5. формирование навыков экспериментальной и исследовательской деятельности;
- 6. участие в публичном представлении результатов самостоятельной познавательной деятельности;
- 7. участие в профильных олимпиадах различных уровней в соответствии с желаемыми результатами и адекватной самооценкой собственных возможностей;
- 8. принятие и реализация ценностей здорового и безопасного образа жизни, неприятие вредных привычек (курения, употребления алкоголя, наркотиков) благодаря знанию свойств наркологических и наркотических веществ; соблюдение правил техники безопасности в процессе работы с веществами, материалами в учебной (научной) лаборатории и на производстве.

Предметными результатами изучения спецкурса по органической химии являются:

- 1) знание (понимание) важнейших химических понятий: вещество, химический элемент, атом, молекула, относительные атомные и молекулярные массы, ион, химическая связь (ковалентная полярная и неполярная, ионная, металлическая, водородная), электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества ионного, молекулярного и немолекулярного строения, окислитель и восстановитель, окисление и восстановление, катализаторы и катализ, тепловой эффект реакции, углеродный скелет, функциональная группа, изомерия (структурная и пространственная) и гомология, основные типы химических реакций (соединения, разложения, замещения, обмена), виды (гидрирования и дегидрирования, гидратации и дегидратации, полимеризации и деполимеризации, поликонденсации и изомеризации, каталитические и некаталитические, гомогенные и гетерогенные) и разновидности (ферментативные, горения, этерификации, крекинга, риформинга), полимеры, биологически активные соединения;
- 2) выявление взаимосвязи химических понятий для объяснения состава, строения, свойств отдельных химических объектов и явлений;
- 3) применение основных положений химических теории: теории строения атома и химической связи, периодического закона и периодической системы химических элементов Д. И. Менделеева, протонной теории, теории строения органических соединений для анализа состава, строения и свойств веществ и протекания химических реакций;
- 4) умение классифицировать органические вещества;
- 5) установление взаимосвязей между составом, строением, свойствами, практическим применением и получением важнейших веществ;
- 6) знание основ химической номенклатуры (тривиальной и международной) и умение назвать органические соединения по формуле, и наоборот;
- 7) определение: валентности, степени окисления химических элементов, зарядов ионов; видов химических связей в соединениях и типов кристаллических решёток; пространственного строения молекул; окислителя и восстановителя; процессов окисления и восстановления, принадлежности веществ к различным классам органических соединений; гомологов и изомеров; типов, видов и разновидностей химических реакции в органической химии;
- 8) умение характеризовать химические свойства основных классов органических соединений;
- 9) объяснение:
- природы химической связи (ионной, ковалентной, металлической, водородной);
- зависимости свойств органических веществ от их состава и строения;
- механизмов протекания реакций между органическими веществами;

10) умение:

- составлять уравнения окислительно-восстановительных реакций с помощью метода электронного баланса;
- проводить расчёты по химическим формулам и уравнениям;
- проводить химический эксперимент (лабораторные и практические работы) с соблюдением требований к правилам техники безопасности при работе в химическом кабинете (лаборатории).

Метапредметными результатами изучения спецкурса по органической химии в 10 классе является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- 1) самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
- 2) выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
- 3) составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
- 4) работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- 5) в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки;
- 6) работая по предложенному и самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
- 7) планировать свою индивидуальную образовательную траекторию;
- 8) уметь оценить степень успешности своей индивидуальной образовательной деятельности;

Познавательные УУД:

- 1) анализировать, сравнивать, классифицировать и обобщать факты и явления, выявлять причины и следствия простых явлений;
- 2) осуществлять сравнение и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

- 3) строить логическое рассуждение, включающее установление причинно-следственных связей;
- 4) создавать схематические модели с выделением существенных характеристик объекта;
- 5) составлять тезисы, различные виды планов (простых, сложных и т.п.);
- 6) преобразовывать информацию из одного вида в другой (таблицу в текст и пр.);
- 7) самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
- 8) уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей;

Коммуникативные УУД:

- 1) самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.);
- 2) отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
- 3) в дискуссии уметь выдвинуть контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- 4) учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
- 5) понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты и т.д.;
- 6) уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Тематическое планирование

No	Наименование разделов	Количество часов
1	Введение	4
2	Углеводороды	25
3	Спирты и фенолы	6
4	Альдегиды. Кетоны	4
5	Карбоновые кислоты, сложные эфиры и жиры	5
6	Углеводы	5
7	Азотсодержащие органические соединения	7
8	Обобщение. Решение задач на генетическую связь между классами органических	6
	веществ	
9	Обобщение. Решение комбинированных расчетных задач	6

Итого 68

Поурочное планирование

No	Тема	Дата
1	Предмет органической химии. Органические вещества	07.09
2	Теория строения органических веществ А.М. Бутлерова	07.09
3	Строение атома углерода	14.09
4	Валентные состояния атома углерода	14.09
5	Алканы. Строение, гомологический ряд, изомерия и номенклатура	21.09
6	Получение алканов	21.09
7	Физические и химические свойства алканов. Применение	28.09
8	Решение задач на вывод формул углеводородов по массовой доле элементов	28.09
9	Алкены. Строение, гомологический ряд, изомерия и номенклатура	05.10
10	Способы получения алкенов	05.10
11	Физические и химические свойства алкенов. Применение	12.10

12	Решение задач на вывод формул углеводородов по количеству продуктов сгорания	12.10
13	Алкины. Строение, гомологический ряд, изомерия и номенклатура	19.10
14	Способы получения алкинов	19.10
15	Свойства алкинов. Применение	26.10
16	Решение задач на вывод формул углеводородов с использованием общей формулы	26.10
	гомологического ряда	20.10
17	Алкадиены. Строение, гомологический ряд, изомерия и номенклатура	09.11
18	Алкадиены, получение, физические и химические свойства	09.11
19	Применение алкадиенов. Каучуки	16.11
20	Циклоалканы. Строение, изомерия и номенклатура, свойства, получение и применение	16.11
21	Решение расчетных задач на вывод формул углеводородов	23.11
22	Решение расчетных задач на вывод формул углеводородов	23.11
23	Арены. Строение, изомерия и номенклатура, Способы получения	30.11
24	Свойства аренов. Применение.	30.11
25	Природные источники углеводородов	07.12
26	Генетическая связь между углеводородами разных гомологических рядов	07.12
27	Генетическая связь между углеводородами разных гомологических рядов	14.12
28	Обобщение и систематизация по теме «Углеводороды»	14.12
29	Обобщение и систематизация по теме «Углеводороды»	21.12
30	Спирты. Классификация. Строение, изомерия и номенклатура	21.12
31	Свойства спиртов	28.12
32	Способы получения спиртов. Их применение	28.12
33	Фенолы. Строение, изомерия и номенклатура	11.01
34	Физические и химические свойства фенолов и получение	11.01
35	Решение расчетных задач на выход продукта реакции	18.01
36	Альдегиды. Кетоны. Строение, изомерия и номенклатура	18.01
37	Физические и химические свойства альдегидов и кетонов	25.01
38	Способы получения альдегидов и кетонов	25.01
39	Решение расчетных задач на избыток и недостаток	01.02
40	Карбоновые кислоты. Классификация. Строение, изомерия и номенклатура	01.02
41	Физические и химические свойства карбоновых кислот. Получение и применение	08.02
42	Сложные эфиры, жиры. Химические свойства, получение и применение	08.02
43	Генетическая связь между углеводородами и кислородсодержащими веществами. Решение	15.02
	расчетных задач на смеси веществ	
44	Зачет по теме «Кислородсодержащие органические вещества»	15.02
45	Углеводы. Классификация. Значение	22.02
46	Моносахариды. Строение, изомерия. Химические свойства	22.02
47	Дисахариды	01.03
48	Полисахариды	01.03
49	Решение расчетных задач по уравнениям нескольких последовательных реакций	15.03
50	Амины. Строение, изомерия и номенклатура	15.03
51	Физические и химические свойства и получение аминов	05.04
52	Аминокислоты. Строение, изомерия и номенклатура. Получение	05.04

53	Физические и химические свойства аминокислот. Применение	12.04
54	Генетическая связь между кислородсодержащими и азотсодержащими соединениями	12.04
55	Белки. Строение, классификация, свойства	19.04
56	Нуклеиновые кислоты	19.04
57	Основные классы органических соединений	26.04
58	Классификация органических соединений по строению «углеродного скелета». Генетическая	26.04
	связь между ними	
59	Классификация органических соединений по функциональным группам. Генетическая связь	03.05
	между ними	
60	Решение цепочек превращений. Задание №32 КИМа ЕГЭ	03.05
61	Решение цепочек превращений. Задание №32 КИМа ЕГЭ	10.05
62	Решение цепочек превращений. Задание №32 КИМа ЕГЭ	10.05
63	Решение расчетных задач на определение формулы орг. вещества. Задание №33 КИМа ЕГЭ	17.05
64	Решение расчетных задач на определение формулы орг. вещества. Задание №33 КИМа ЕГЭ	17.05
65	Решение комбинированных расчетных задач повышенного уровня сложности	17.05
66	Решение комбинированных расчетных задач повышенного уровня сложности	24.05
67	Итоговый зачет по курсу «Практикум по химии»	24.05
68	Итоговый зачет по курсу «Практикум по химии»	24.05

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Условия реализации курса

Материально-техническое обеспечение курса

Мультимедийное оборудование, компьютер, принтер, непрограммируемые калькуляторы, периодическая система химических элементов Д.И.Менделеева, таблица растворимости веществ, электрохимический ряд напряжений металлов.

Информационно-методическое обеспечение курса

- 1. Габриелян О. С. Химия. 10 класс: учеб. пособие для общеобразоват. организаций: углуб. уровень / О. С. Габриелян, И. Г. Остроумов, С. А. Сладков. М.: Просвещение, 2021.
- 2. Габриелян О. С. Методическое пособие к учебнику О. С. Габриеляна и др. «Химия. 10 класс. Углублённый уровень» / О. С. Габриелян, И. Г. Остроумов, С. А. Сладков. М.: Просвещение, 2021.
- 3. А.Н.Левкин, Н.Е. Кузнецова. Задачник по химии.11 класс. М., издательский центр «Вент-Граф», 2020